

Website:www.cewsa.comEmail:cewsa@cewsa.com716 US Highway 231Wetumpka, AL 36093Phone:(334) 567-6814Fax:(334) 567-5556

Board of Directors

Bill Newton – Chairman Ron Johnson – Vice-Chairman Fred Braswell – Director Chad Shaw – Interim General Manager Tina Stanley – Secretary

2020 Annual Water Quality Report

PRESENTED TO OUR CUSTOMERS BY:

Central Elmore Water And Sewer Authority 2020 Annual Water Quality Report

PWS # 000547

Safety and security have always been our top priorities. Central Elmore Water and Sewer Authority strives to deliver safe drinking water to our customers and to keep the utility secure and protected. The Source Water Assessment was updated in 2018 and no problems were found. It is continually monitored and can be viewed at the main office. We are proud to deliver this annual report covering the year 2020.

Central Elmore Water & Sewer Authority maintains and operates a 12-million gallon per day surface water treatment plant at our primary water source on Lake Martin. Here at Central Elmore Water & Sewer Authority we serve approximately 12,611 customers of our own along with four fulltime neighboring utilities, Rockford (1,301 customers), Friendship (1,400 customers), Eclectic (1,631 customers), and Wetumpka (3,500 customers). Each customer refers to a meter served, which translates into approximately 61,329 persons served by Central Elmore Water & Sewer Authority.

Our territory covers approximately 350 square miles out of the 657 square miles contained in Elmore County. We currently maintain over 750 miles of water lines in our territory along with 12 water storage facilities holding a total of almost 7.7 million gallons.

A Message from Our Main Office

I am privileged to present to you our Annual Water Quality Report. This report is an overview of last year's water quality. We are committed to providing you with the enclosed information because informed customers are our best allies. The report has been prepared to meet the requirements of the 1996 Safe Drinking Water Act (SDWA) adopted by Congress and to provide our customers with information about their water system. The changing environment of the water industry has continued to keep our Staff focused on the future needs of the system as well as watching the bottom line.

The water provided to you by Central Elmore Water & Sewer Authority (CEW&SA) once again meets or exceeds all state and federal water quality regulations. We are pleased to inform you that CEW&SA has never had a violation of contamination levels in the water we supply you, our valued customers.

During 2020, CEW&SA experienced continued growth with the strengthened economy. We've seen many new developments, subdivisions and families moving into our service territory. The vision of our Board, Management and Staff has always been to stand prepared for any influx into our county. The goal of CEW&SA is to provide customers with a safe, reliable supply of drinking water that can be used with assurance at the lowest possible cost while maintaining the highest quality. municipal drinking water systems, should remove or inactivate the virus that causes COVID-19." The World Health Organization adds that the "presence of the COVID-19 virus has not been detected in drinking-water supplies and based on current evidence the risk to water supplies is low." We have staff and infrastructure in place to maintain water service around the clock. Rest assured we will continue to carefully monitor this situation and provide you with any appropriate information that might affect you as a CEW&SA customer.

I encourage you to take the time to read this report. If you have any questions concerning this report or CEW&SA, please contact me, Chad Shaw, at 334-567-6814, Monday - Friday, 7:30 a.m. to 4:30 p.m. and I will be glad to address any concerns you may have. Regularly scheduled Board meetings are held at 12:00 p.m. on the third Tuesday of each month at the main office located at 716 US Hwy 231, in Wetumpka. CEW&SA Board members are as follows: Chairman – Bill Newton, Vice-Chairman – Ron Johnson and Director – Fred Braswell. Again, please feel free to contact me with any questions or concerns you may have involving Central Elmore Water and Sewer Authority.

System Flushing

You may on occasions see hydrants that flush slowly for several days. Any time there is a leak air enters the mains. This air must be removed and flushing slowly at certain locations relieves the mains of the air. Air can cause the water to be milky, but it is safe to drink. There are also times when we must flush for ADEM requirements. We usually try to have a small yellow sign on the hydrant while flushing. Call us at the office if you suspect the hydrant is flowing unintentionally. If you see someone filling anything from a hydrant call the office immediately. Thank you.

<u>Reading Your Meter</u>

During these uncharted times dealing with the Coronavirus (COVID-19) pandemic, our valued customers may have questions about the safety and continued availability of drinking water. We at CEW&SA understand this is a stressful time for our community and for the households we serve. Please know that we are here for you and are committed to taking all steps necessary to maintain safe, reliable water service.

You can continue normal use of tap water. The U.S. Environmental Protection Agency (EPA) recommends that Americans continue to use and drink tap water as usual. COVID-19 has NOT been detected in drinking water supplies. According to the U.S. Centers for Disease Control and Prevention (CDC): "Conventional water treatment methods that use filtration and disinfection, such as those in most

Sincerely, Chad Shaw, P.E.

Happening at the Plant...

Every year brings new challenges with it and 2020 has been a very challenging year in respects to the pandemic. I am proud to report that we have continued to provide our customers with clean, safe drinking water that meets or exceeds regulatory standards. We also wanted to give and update on the seasonal issue of taste and odor that some of our customers experience. Since first occurring in 2013 the Authority has implemented several treatment strategies to mitigate taste and odor. Some have worked better than others but none have solved the problem completely. The Authority has continued to look at other treatment options based on efficacy and costs. In the end CEW&SA wants to produce the highest quality water possible while being monetarily responsible. Also, we want to remind our customers that the water has always been safe to drink. Taste and odor are not a public health concern. Please take the time to read the report and if you have any questions, I can be contacted at 334-512-0480. Sincerely, Patrick Morgan- Plant Manager

5/8" Meters – This is the standard meter for residential customers. Note the last digit is 1/10 of a gallon. It reads 0000025.1 gallons. CEW&SA reads all the white numbers and one black number for billing. These new meters read very similar to the old meters. 5/8", 34", and 1" meters read the same way. The red needle is the leak indicator. 1 full rotation = 0.1 gallon of water. The 10-digit meter number is on the top right of the meter starting with 155 or 156. Visit www.cewsa.com for more information. You have to flip the black lid up to read meter face. The black knob does not turn off meter or turn pressure up or down.

Notice: Please make sure your contact information is updated at the office. If we find a leak on your service line, we will make an attempt to contact you.

Special Health Information:

Some people may be more vulnerable to contaminates in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791)

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline.

General Information about Drinking Water Contaminants:

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include: **Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. **Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. **Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. **Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also, come from gas stations, urban storm water runoff, and septic systems. **Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. CEW&SA is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using the water for drinking or cooking. If you are concerned about lead in your water, you may want to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Drinking Water Hotline Safe or at http://www.eps.gov/safewater/lead.

Based on a study conducted by ADEM with the approval of the EPA a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus, monitoring for any of these contaminants was not required.

Definitions:

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

90th Percentile: 90% of samples are equal to or less than the number in the chart

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants

Maximum Residual Disinfectant Level or (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. NA: Not applicable.

ND: Not detectable at testing limits.

PPB or parts per billion: micrograms per liter (ug/l). PPM or parts per million: milligrams per liter (mg/l).

Action Level or AL: The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, which a water system must follow. Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water

NTU or Nephelometric Turbidity Units: A measure of clarity.

Table of Detected Contaminants (2020)								Un-Regulated Contaminant				
CONTAMINANT	MCLG	MCL	Units	CEWSA		Likely Source of Contamination						
Bacteriological	Jan 1, 2020- Dec 31,		1,2020	Highest Detected	Range of Detected			CONTAMIN	ANT	Average Detected Lev		
Total Coliform Bacteria	NA	< 5%	Present or Absent	Coliform Absent	Coliform Absent	Naturally present in the environment	I	Bromodichlorometha	ne (ppm)	0.004		
Turbidity	NA	TT	NTU	0.09	.016090	Soil runoff	- 6	Bromoform (ppm)		ND		
,				Highest	Range of		- [-	Trichloroacetic acid (ppm)		0.005		
Radiological Jan 1, 2020- Dec 31, 2020		1,2020	Detected	Detected			Dichloroacetic acid (ppm)	0.015			
Radium 228	NA	15	PCI/L	ND	ND	Erosion of natural products		Chloroform(ppm)	· · · · · · · · · · · · · · · · · · ·	0.022		
Inorganic Chemicals	Jan 1.	2020- Dec 3	1,2020	Highest	Range of			Dibromochlorometha	ne(ppm)	0.0006		
			-,	.130= (90th)	Detected Zero sites	Corrosion of household plumbing systems; erosion of natural	-1	Dibromoacetic acid ((mag	ND		
Copper	1.3	AL=1.3	ppm	Percentile	above action	deposits; leaching from wood preservatives	_ _	Monochloroacetic ac	id (ppm)	0.0006		
Lead	0	AL=.015	ppm	.0004= (90th)	Zero sites	Corrosion of household plumbing systems; erosion of natural	- Hi	Monobromoacetic ac	id (ppm)	<u> </u>		
Fluoride	4	4	ppm	0.76	0.76	Erosion of natural deposits; water additive which promotes	٦Ë	Dibromomethane(ppt)	ND		
Nitrite	1	1	nnm	ND	ND	strong teeth; discharge from fertilizer and aluminum factories Runoff from fertilizer use; leaching from septic tanks, sewage;	╡╏		-/			
i vitite		'	ppm	ND	ND	erosion of natural deposits	41	Unreg	minants Table			
Nitrate	10	10	ppm	0.097	0.097	erosion of natural deposits	I	n addition to the primary dr	inking water conta	minants, the utility r		
Barium	2	2	ppm	0.012	0.012	Discharge of drilling wastes; Discharge from metal refineries;	t	he following unregulated and	l secondary contan	ninants as regulated by		
	-	-	PP			Erosion of natural deposits	- I	Environmental Management.	The ADEM has p	proposed regulations u		
Antimony	0.001	0.001	ppm	ND	ND	electronics: solder	r	equirement of this addition	all monitoring and	reporting will furth		
•	0	0.001		ND	ND	Erosion of natural deposits; Runoff from orchards; Runoff from	d	frinking water and will keep y	ou, as a utility cust	omer, more informed		
Arsenic	0	0.001	ppm	Highest	Range of	glass and electronics production wastes	ЦГ	CONTAMINANT	Average	CONTAMIN		
Organic Chemicals	Jan 1,	2020- Dec 3	1,2020				١Ŀ	CONTAINENAN	Detected Level			
	1	r	r	Detected	Detected		1	1,1 - Dichloropropene	ND	Chloroform		
TTHM	NA	0.08	ppm	0.037	.023037	By-product of drinking water chlorination	1	1,1,1,2-Tetrachloroethane	ND	Chloromethane		
Helessotia A aid	NA	0.06		0.024	010 024	Py product of drinking water chloringtion		1,1,2,2-Tetrachloroethane	ND	Dibromochlorome		
Haloacetic Acid	INA	0.06	ppm	0.024	.019024	By-product of driftking water chlorination	1	1,1-Dichloroethane	ND	Dibromomethane(
Total Organic	NA	TT	ppm	2.13	.95 - 2.13	Naturally present in the environment	1	1,2,3 - Trichlorobenzene	ND	Dicamba		
Carbon(TOC)			11			J. J. J. L. J.	- 1	,2,3 - Trichloropropane	ND	Dichlorodifluorom		
Chlorine Dioxide	0	0.80	ppm	0.43	.0643	Water additive used to control microbes		1,2,4 - Trimethylbenzene	ND	Dieldrin		
au 1	0	1.00		0.05	24 05		-14	1,3 - Dichloropropane	ND	Hexachlorobutadi		
chlorite	0	1.00	ppm	0.95	.3495	By-product of drinking water disinfectant	_1H	1,3 - Dichloropropene	ND	IsoprpyIbenzene		
Vylenes	10	10	nnm	ND	ND	Discharge from petroleum factories; Discharge from chemical	78	1,3,5 - Trimethylbenzene	ND	M-Dichlorobenzer		
Ly Icites	10	10	PPm	T.D	цъ	factories	4	2,2 - Dichloropropane	ND	Methomyl		
		Table	of Dr	imary C	ontomin	ants (2020)	3	3-Hydroxycarbofuran	ND	MTBE		
Table of Primary Contaminants (2020)							A	Aldıcarb	ND	Metolachlor		

At high levels some primary contaminates are known to pose a health risk to humans. This table provides a glance of any rimary contaminant detections. ADEM now requires us to place all that are tested for on here even though most were no etected ND = NOT DETECTED

		AMOUNT			AMOUNT DETECTI	
CONTAMINANT	MCL	DETECTED	CONTAMINANT	MCL		
Bacteriological			Endothall	100	ND	
Total Coliform Bacteria	< 5%	0	Endrin	2	ND	
Total Carbon (TOC)	TT	2.13	Epichlorohydrin	TT	ND	
Turbidity	TT	0.090	Glyphosate	700	ND	
Radiological			Haloacetic Acid(ppm)	0.06	0.024	
Beta/photon emitters (mrem/yr	4	ND	Heptachlor	400	ND	
Alpha emitters (pci/l)	15	ND	Heptachlor epoxide	200	ND	
Combined radium (pci/l)	5	ND	Hexachlorobenzene	1	ND	
Inorganic			Hexachloropentadiene	1	ND	
Antimony (ppm)	0.001	ND	Lindane	200	ND	
Arsenic (ppm)	0.001	ND	Methoxychlor	40	ND	
Asbestos (MFL)	7	NA	Oxamyl [Vydate]	200	ND	
Barium (ppm)	2	0.012	PCBs	500	ND	
Beryllium (ppm)	0.004	ND	Pentachlorophenol	1	ND	
Cadmium (ppm)	0.005	ND	Picloram	500	ND	
Chromium (ppm)	0.1	ND	Simazine	4	ND	
Copper (ppm)	AL=1.3	0.130	Toxaphene	3	ND	
Cyanide (ppm)	0.2	ND	Benzene	5	ND	
Fluoride (ppm)	4	0.76	Carbon Tetrachloride	5	ND	
Lead (ppm)	AL=.015	0.0004	Chlorobenzene	100	ND	
Mercury (ppm)	0.002	ND	Dibromochloropropane	200	ND	
Nitrate (ppm)	10	0.097	0-Dichlorobenzene	600	ND	
Nitrite (ppm)	1	ND	p-Dichlorobenzene	75	ND	
Selenium(ppm)	0.05	ND	1,2-Dichloroethane	5	ND	
Thallium(ppm)	0.001	ND	1,1-Dichloroethylene	7	ND	
Chlorine(ppm)	4	2.1	Cis-1,2-Dichloroethylen	70	ND	
Organic Chemicals			trans-1,2-Dichloroethylene	100	ND	
2,4-D	70	ND	Dichloromethane	5	ND	
2,4,5-TP (Silvex)	50	ND	1,2-Dichloropropane	5	ND	
Acrylamide	TT	ND	Ethylbenzene	700	ND	
Alachlor	2	ND	Ethylene dibromide	50	ND	
Atrazine	3	ND	Styrene	100	ND	
Benzo(a)pyrene[PHAs]	200	ND	Tetrachloroethylene	5	ND	
Carbofuran	40	ND	1,2,4-Trichlorobenzene	0.07	ND	
Chlordane	2	ND	1,1,1-Trichloroethane	200	ND	
Dalapon	200	ND	1,1,2-Trichloroethane	5	ND	
Di-(2-ethylhexyl)adipate	400	ND	Trichloroethylene	5	ND	
Di(2-ethylhexyl)phthlates(ppb)	6	ND	TTHM(ppm)	0.08	0.037	
Dinoseb	7	ND	Toluene	1	ND	
Diquat	20	ND	Vinyl Chloride	2	ND	
Dioxin[2,3,7,8-TCDD]	30	ND	Xylenes(ppm)	10	ND	
Chlorine Dioxide(ppm)	800	0.43			1	

Un-R	Detected Secondary & Physical Contaminants Table									
CONTAMIN	ANT	Average Detected Level	Range of Detected Levels	CONTAMINANT			Highest Detected Lev	Ra vel Detec	Range of Detected Levels	
Bromodichlorometha	ne (ppm)	0.004	.003004	Calcium (ppm)			2.7		2.7	
Bromoform (ppm)		ND	ND	Carbon Dioxide (ppm)			17.6	6	6 - 17.6	
Trichloroacetic acid ((ppm)	0.005	.002012	Chloride (ppm)			12.5		12.5	
Dichloroacetic acid (ppm)	0.015	.010025	Color (units)			ND		ND	
Chloroform(ppm)		0.022	.011031	Copper (ppm)			0.130	NE	ND130	
Dibromochlorometha	ne(ppm)	0.0006	.00020008	Hardness (ppm)			9.9		9.9	
Dibromoacetic acid ((mag	ND	ND	Iron (ppm)			0.060	NE	ND060	
Monochloroacetic ac	id (ppm)	0.0006	ND002	Magnesium (ppm)			1.18		1.18	
Monobromoacetic ac	id (ppm)	ND	ND	pH (su)			8.5	7	7.1 - 8.5	
Dibromomethane(not		ND	ND	Potassium			NA	,	NA	
Dibiomornemane(ppr)	ND	ND	Sodium (ppm)			15.6		15.6	
Ummo	unlasta d Camta	minanta Tabla (202	0)	Spacific Conductance (umbos)			10.0		123	
Unreg	inking unter conta	minants Table (202	(U)	Sulfate (ppm)			5.35		5.35	
the following unregulated and	secondary contar	ants, the utility monitors regularly for some of ants as regulated by the Alabama Department o		Total Alkalinity (ppm)			29		15-29	
Environmental Management.	The ADEM has p	proposed regulations under o	consideration at the time	Total Dissolved Solids (ppm)			72		72	
requirement of this addition	any detects to be a all monitoring and	reported in all subsequent w l reporting will further in:	ater quality reports. The sure the safety of your	Zinc (ppm)			ND		ND	
drinking water and will keep y	ou, as a utility cust	omer, more informed.		Aluminum (ppm)			ND		ND	
CONTAMINANT	Average	CONTAMINANT	Average Detected Level	Manganese (ppm)			0.016	N	ND016	
1,1 - Dichloropropene	ND	Chloroform	0.022	Foaming Agents (ppm)			ND		ND	
1,1,1,2-Tetrachloroethane	ND	Chloromethane	ND	Toarning Agents (ppm)			ne -			
1,1,2,2-Tetrachloroethane	ND	Dibromochloromethane	e 0.0006							
1,1-Dichloroethane	ND	Dibromomethane(ppb)	ND		00	MR4 F	Results 2	020	<u>20</u>	
1,2,3 - Trichloropropane	ND	Dichlorodifluorometha	ne ND				2/20/2020	5/21/2020	8/19/2020	
1,2,4 - Trimethylbenzene	ND	Dieldrin	ND	Manganese	9 -		.003 ppm	.002 ppm	.0009 ppm	
1,3 - Dichloropropane	ND	Hexachlorobutadiene	ND	Germanium -			ND		ND ND	
1,3 - Dichloropropene	ND	Isoprpylbenzene	ND	Total Permethrin -			ND	ND	ND	
2.2 - Dichloropropane	ND	M-Dichlorobenzene Methomyl	ND	Alpha-hexachlorocyclohexane		ohexane	- ND	ND	ND	
3-Hydroxycarbofuran	ND	MTBE	ND	Dimethipin -			ND	ND	ND	
Aldicarb	ND	Metolachlor	ND	Oxyfluorfe	n -		ND	ND	ND	
Aldicarb Sulfone	ND	Metribuzin	ND	Protenotos -			ND	ND	ND	
Aldicard Sulloxide	ND	N - Butylbenzene Naphthalene	ND	Tebbuconazole -			ND	ND	ND	
Bromobenzene	ND	N-Propylbenzene	ND	Ftheorem			ND	ND	ND	
Bromochloromethane	ND	O-Chlorotoluene	ND	Ethoprop -	ludrowyoni		ND		ND	
Bromodichloromethane	0.004	P-Chlorotoluene	ND	O-toluidine -		sole -	ND			
Bromomethane	ND	Propachlor	ND	Quinoline -			ND	ND	ND	
Butachlor	ND	Sec - Butylbenzene	ND	1-butanol -			ND	ND	ND	
Carbaryl	ND	Tert - Butylbenzene	ND	2-methoxyethanol -			ND	ND	ND	
Chloroethane ND		Trichlorfluoromethane	ND	2-propen-1-ol -			ND	ND	ND	
Secon	lay & Physics	al Contaminants Ta	ble	Total Organic Carbon (TOC)			1.85 ppm	2.58 ppm	2.34 ppm	
CONTAMINANT	Detected Level	CONTAMINANT	Detected Level				HAA5	HAA6Br	HAA9	
Aluminum	ND	Total Alkalinity (ppm)	29	<u>2/20/2020</u>						
Calcium (ppm)	2.7	Chloride (ppm)	12.5	323 Marshell Rd.			.021 ppm	.003 ppm	.024 ppm	
Magnesium (ppm)	1.18	Sulfate (ppm)	5.4	80991 Tallassee			.018 ppm	.003 ppm	.021 ppm	
Nickel	0.016 ND	pH (su)	8.5	1605 New Home			.017 ppm	.003 ppm	.019 ppm	
Silver	ND	Odor	None	5/21/2020			.018 ppm	.003 ppm	.022 ppm	
Zinc (ppm)	ND	Iron (ppm)	0.06	323 Marshell Rd.			.032 ppm	.004 ppm	.036 ppm	
Hardness (ppm)	9.9	Sodium (ppm)	15.6	80991 Tallassee			.028 ppm	.004 ppm	.032 ppm	
Copper (ppm)	0.13	Carbon Dioxide (ppm)	17.6	1605 New Home			.036 ppm	.004 ppm	.040 ppm	
Specific Conductance	123	Foaming Agents(ppm	i) ND	470 Shokula Lane			.032 ppm	.004 ppm	.036 ppm	
				<u>8/19/2020</u>						
				323 Marshe	ll Rd.		.032 ppm	.005 ppm	.037 ppm	
				80991 Talla:	ssee		.030 ppm	.005 ppm	.034 ppm	
	1605 New Home .029 ppm .004 ppm .03				.033 ppm					
				470 Shokula	Lane		.032 ppm	.005 ppm	.037 ppm	
Water Loss In Gallons										
	Leak this	Loss Per	Loss Pe	r eakthis	Loss Per	Loss Per				
	Condensation	ma	\sim	Size	Dav	Month	Size	Dav	Month	
55/	and a		221	0120	120	3 600		6.640	100 520	
120		m hatte	pitanter 1	•	120	3,000		0,040	199,520	
becomen horitoren, iderkiteren	Transmitter frankriger		1/6	•	300	10,800) •	6,964	209,520	
11 22	S. S. C. 1	12 S WIN	くろくん	•	693	20,790) 🔴	8,424	252,720	

Reth

1,200

1,920

3,095

4,295

.

۲

.

•

36,000

57,600

92,880

128,880

9,585

14,952

296,640

448,560

11,324 339,720

12,750 361,600